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ABSTRACT

This paper reviews some recent develo'rmeats in direct time integration

methods for nonlinear structural dynamics. The developments pertain to the

use of linear multistep difference operators in conjunction with the pseudo-

force approach. The paper is organized into three main sections. An

introductory section provides an overview of the transient response analysis

problem. A section on computational aspects deals with the organization of

the numerical calculations; this material is largely based on a recent

detailed study of linear dynamic calculations [1-21. A section o.. integra-

tion methods highlights algorithmic aspects that impact the selection of

integrator for nonlinear problems and discusses adaptive analysis features

such as stepsize control and implicit matrix scaling techniques. An

appendix section outlines the functional organization of modular "integration

driving" software.
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Section 1

INTRODUCTION

1.1 The State of Computational Nonlinear Mechanics

Nonlinear dynamics is structural mechanics'new frontier. Although signifi-

cant progress in the theory and implementation of computational methods has

been made, nonlinear dynamics is presently an unsettled field and is likely

to remain so in the near future.

A decade ago over 90% of engineering design work and perhaps over half of

verification work was carried out using "linear thinking" mode. Of the

nonlinear analysis fraction, an overwhelming proportion was devoted to static

problems such as, for example, stability assessment. Applications of transient

nonlinear analysis were hampered by three factors:

(1) Lack of reliable, computationally-oriented formulations;

(2) High computational costs;

(3) Unfamiliarity of prospective user'7 with nonlinear mechanics in

general and the use of application programs in particular.

Since then, these roadblocks have eroded in different degrees. Most dramatic

progress has been made in (1). Obstacle (2) has weakened by gradual but

steady decrease of unit computational costs as well as by improving efficiency

of new implementations. The "education gap" (3) remains, however, a formidable

barrier. Although it is easy to say that any problem in structural mechanics

can be attacked from a nonlinear dynamics standpoint, in practice a converse

route is followed. But it is often difficult for the nonspecialist to judge

in advance whether nonlinearities and dynamic effects are of sufficient

importance to merit consideration at some stage of the design or verification

cycle. The main purpose of this section is to provide a quick overview of

structural problems that may require a nonlinear dynamics treatment.
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1.2 Motivation for Nonlinear Analysis

The increasing importance of nonlinear analysis is to a large extent due to

emphasis placed by manufacturers, contractors and certifying agencies on

realistic modeling and accurate analysis of critical structural components.

This endeavor has prompted not only the incorporation of nonlinear analysis

capabilities into existing linear codes, but also the development of new

finite-element and finite-difference codes specifically designed for nonlinear

analysis.

The need for nonlinear analysis capabilities was initially felt in the

aerospace industry. Pressing demands for lightweight design led to the

investigation of new structural configuration concepts (e.g., thin shear-

carrying webs), new fabrication concepts (e.g., honeycomb panels), and

increasing use of brittle materials such as fiber-reinforced composites.

Implementation of these advanced concepts prompted concern over realistic

modeling of structural components as regards numerical simulation of their

behavior under critical loading and environmental conditions.

Continuing progress in variational discretization and solution techniques,

coupled with the dissemination of production-level software, has helped in

spreading interest in nonlinear structural analysis to non-aerospace

applications occurring in automotive, bio, civil, industrial, nuclear and

petroleum, engineering. Among those systems that are often subject to signi-

ficant nonlinear effects, we can mention thin shells, pressure vessels,

nuclear reactors, cable and pneumatic structures, impacting structures,

equipment mounts, shock-excited underwater and underground structures, and

metal-forming machinery.

1.3 Static Versus Dynamic Treatment

As noted previously, an overwhelming proportion of engineering applications

of nonlinear structural analysis are performed in "static mode" despite the

undeniable presence of dynamic effects in many situations, such as snap-

through analysis. This practice is commonly justified on various grounds.

1-2



First, it can be argued that many of the problem characterization parameters

such as excitation and constitutive behavior are presently poorly understood

and qualitatively uncertain to begin with. Second, the neglect of inertial

effects often leads to conservative results. Third, dynamic analysis is

both more cumbersome to carry out and more expensive than static analysis.

As more experience is gathered, the third argument weakens. In fact, non-

linear dynamic analysis is more easily implemented in a general purpose

program framework than nonlinear static analysis. (This does not aoply, of

course, to linear analysis.) The only practical solution procedure for the

former is direct time ix.cegration, whereas for the latter there is a vast

array of special techniques that must be mastered by potential users. If

computational costs continue to decrease in relation to manpower costs, it

is not farfetched to presage that nonlinear static solution procedures could

be eventually embedded into a dynamic analysis driver. if this occurs, the

second argument becomes irrelevant. The first argument (poor problem

characterization) remains valid, but an answer to this question lies primarily

within the scope of experimental mechanics.

1-4 Sources of Nonlinearities

Problems in structural mechanics are formulated in terms of three spatial

fields: displacements, strains, and stresses. These fields are connected by

the stress-displacement and stress-strain (constitutive) relations as shown

in Figure 1, which is adapted from 13]. The boundary value problem is closed

by specification of the boundary conditions (B.C.) on displacements and/or

stresses (or stress resultants). In dynamic analysis, the initial value

problem is completed by specification of the initial displacements and

velocities at a reference state.

Any of the four two-way links shown in Figure 1 may be nonlinear. Conse-

quently, sources of nonlinearity can be naturally classified into four

groups: force, material, geometric, and kinematic, which correspond to

links 1, 2, 3, and 4, respectively.

1-3
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1.5 Governing Equations of Motion

The response of the physical structure to external excitation is anproximated

by that of a di5crete mathematical model with nf degrees of freedom, which

are collect<- in a state vector u. The components of u are generalized dis-

placemr._ coordinates that define the spatial configuration of the discrete

model with respect to a reference state u for every time t. (This reference

state may be updated during the solution of highly nonlinear problems.)

A contiguous family of configurations u = u(t) satisfying initial and pres-

cribed displacement conditions is called a motion. The governing equations

of motion appropriate to the description of a wide range of nonlinear dynamic

problems can be presented as follows [I]:

Mu + Du + C(u,u) + K u + S(u) = f(t) (1.1)

where a superposed dot denotes temporal differentiation, and

M, D,,• mass, reference-damping, and reference-stiffness matrices,

respectively (the "reference' concept is discussed in

Section 1.6) ;

C, S nonlinear damping and stiffness operators, respectively,

which generate state-dependent corrective force vectors;

f(t) vector of applied (generalized) forces.

The motion u(t) corresponding to a given f(t) will be called the response of

the system (1.1). Essential B.C. on specific components of u(t) are assumed

to be embodied in (1.1) for notational c-nvenience. The effect of non-

homogeneous essential B.C. can be also incorporated in (1.1) through various

techniques such as the adjunction of penalty terms or the introduction of

Lagrange multipliers.

The generation of system (1.1) from the continuous field model schematized in

Figure 1 will not be dealt with in this paper, which is concerned with

techniques for solving it.
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Remark 1. Equation (1.1) does not cover tne esoteric :lass of mass- I
varying problems ucn as reentry veumhicle n

Aemark 2. Equaticn (1.1) as written does not model ":at> dependent"

problems, in which the response is a functional o.- f t:e rast mtion. Tese

croblems can be accounted for by making the nonlinear terms memory-

functional operators.

Remark 3. In explicit time integration, K = 0, and all stiffness

information is transmitted in vector form.

1.6 The Pseudo-Force Aeproach

Impli:it direct time integration procedures for solving (1.1) can be based

on either the tangent stiffness or a pseudo-force aeproach. In the former,

which is briefly discussed in Section 2.2, (1.1) is linearized at each

computed state and the solution advanced incremental!-. In the latter, tne

reference matrices X and D are kept fixed over many computational steps and

the nonlinear terms S and C are treated as state-dependent reaction forces;

this is the approach emphasized herein.

The application of the pseudo-force approach to transient nonlinear analysis

was first advocated by Stricklin, Haisler and coworkers i41. Their strategy

was to use the linear matrices K and D evaluated at the initial configuration.

We can, however, do much better from a global point of view if the selection

of K and D is not so restricted; in fact, such matrices need not be identi-

fiable with the stiffness and damping matrices evaluated at actual configura-

tions. This generalized pseudo-force method, presented by Underwood and

Park 151, is designed to work effectively in conjunction with the matrix

scaling technique described in Section 3.

The generalized stiffness selection concept may be illustrated with the

bilinear spring shown in Figure 2. In the conventional pseudo-force

approach, the stiffness would be based on the initial slope k . In the
0

approach dsscribed here, an average slope k can bq used to evenly distribute

the force residual magnitude over the expected operational range (note that

k is not physically attainable).

1-6
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A helpful guideline is: integration procedures based on the pseudo-force

approach experience less difficulties with "softening" systems (e.g., elasto-

plastic materials) than with "hardening" systems (e.g., tensile structures).

It is therefore best to err on the side of overestimatin.g the initial refer-

ence stiffness. AS a simple application of this rule, consider the iripact

analysis of two structures, S 1 and S2' which are initially separated. Then

the reference stiffness should be that of SI+S2 moving together.

1.7 Classification of Nonlinear Dynamics Problems

A simple classification scheme can be based on the effect of the spectral

characteristics of the excitation on the overall structural response:

Structural Dynamics (SD) Problems: The response is controlled by

a relatively small number of low-frequency modes.

Wave Propagation (WP) Problems: The contribution of intermediate

and high-frequency structural modes to the response remains

important throughout the time span of interest.

In the above, the terms "frequencies" and "modes" refer to the eigenspectrum

of the linearization of the left-hand side of ( -1); because of nonlinearities

this spectrum can be expected to vary (usually mildly) with the state. The

qualifiers low, intermediate, and high refer to frequencies whose associated

wavelengths are much larger than, of the order of, and much smaller than the

characteristic acoustic wavelengths, respectively.

In practice, a combination of the preceding types is often encountered:

Shock-excited Problems: An initial high-frequency transient

gradually decays to a steady state or free vibration regime (step

waves, earthquakes, single impact, separation phenomena, accidents).

Multishock-excited Programs: Multiple high-frequency transients

occur with some regularity, possibly leading to gradual collapse

or fatigue phenomena (reflecting shock waves, repeated impacts,

periodic deployment).

1-8



Dvnamic InstabilitZ: Relatively smooth, bounded response

suddenly "takes off" as critical conditions are attained

(follower forces, flutter, parametric excitation, phase

changes).

Generally speaking, implicit integration methods are most effective for SD

problems (or phases) while explicit integration methods are at their best

for tracing WP problems (or phases).

1.8 Organization of the Paper

Direct time integration techniques for (1i.) can be studied from two

standpoints:

1. Algorithmic: Study of mathematical properties such as stability

and accuracy of the integration formulas.

2. Computational: Study of properties directly correlated with the

implementation of the integration procedure on a computer.

An array of subjects pertaining to the latter viewpoint is presented in

Figure 3 in logical flowchart format. The basic formulation steps leading

to the "advancing cycle" box (central column in Figure 3) are covered in

Section 2.

Section 3 reviews algorithmic aspects that impact the selection of integra-

tion formulas for nonlinear dynamics, and discusses features labeled as

"advanced" in Figure 3, namely accuracy control via automatic stepsiza

selection, and the matrix scaling technique.

1-9
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Section 2

COMPUTATIONAL ASPECTS

2.1 Reduction to a First-Order System

Equation (1.1) can be reduced to a first order system by introducing the

auxiliary vector v [61:

v = AMu + B u (2.1)

A AMu + BEU

A (f -C - S - K u - D u) + B u (2.2)

where A and B are (for the moment) arbitrary nf by nf matrices with A non-

singular. These matrices are independent of time and state, although they

can be functions of the integration stepsize. The resulting first-order

system (2.1 - 2.2) can be written

o] -} ] u {(2.3)

where I and 0 denote the identity and null matrix, respectively, and 2

is the effective force

2 = f_- C- S (2.4)

Note that the nonlinear terms C and S have been transferred to the right-

hand side as "pseudo-forces." Equation (2.3) fits within the standard O.D.E.

format

v = F(v,t) (2.5)

2-1



t tt
where y = (ut v t), and

-1
A M oV B u

F = (2.6)
AD- B- Ku

2.2 Time Discretization by LMS Formulas

We consider the numerical integration of the first-order system (2.3) using

m-step, one-derivative, linear multistep CLMS) difference operators to dis-

cretize the time variation of u and v. A detailed treatment of these methods

can be found elsewhere, e.g.,[7-9]. For a constant stepsize h, IMS operators

applied to Eq.(2.3) at the n-th time station t can be written

m m

2 Y i 1-i hl--i 0 -

i1O i=O
(2.7)

m m
Yi -i h a~- 0, Yo 0

S OO

where ai ai' Yif and •.are scalars associated with specific finite

difference operators, and !, k' .... stand for the vectors u(tk), v(tk) -....

computed through the discretization procedure (2.7). The above difference

expressions may be scaled by arbitrary factors. In the sequel they will be

normalized by requiring that

a = y = 1 (2.8)

If So is nonzero (zero), the operator (2.7a) is said to be implicit (explicit),

and similarly for (2.7b).

With a view to subsequent manipulations, it is convenient to introduce a

more compact notation which, nevertheless, separates explicitly the current

2-2
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state variables u , u , v , v from historical terms involving past

solutions:

u + a = h u + hb
-n *-n -n- (2.9)

v + c n h n + h dn-fl -n h8v- -n

where the "generalized stepsizes" h6 , h 5 are defined by

h hS h =h o (2.10)
5 0 0

and vectors a, b, ... denote linear combinations of past solutions:

-n - -m 
(2.11)

In Eq. (2.11), z is an arbitrary vector symbol, which may stand for u, u

etc. The current state solution (u nv) can be expressed from (2.9) in the

fc I

hu
u h u -n n

+ (2.12)v ha h

where

h = h b - a
-n -- -n

(2.13)

.V v
hV a - c
-n -n -n

will be called, following Jensen [61, the historical vectors pertaining to

u and v, respectively.
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2.3 implicit Integration

We consider first implicit LI4S operators, for which both 4 and 0 are

nonzero, whence h # 0 and h5 $ 0. Elimination of U and v from (2.3) and

(2.13) then produces the nonlinear algebraic system ot order 2 nf:

AM+h• B. -hB "U ;" -n

A- (2.14)
A - B + hB A K I tV i (A D- B) hU + hv +h A

a ~ ~ - . i-n --n a

where n = /h = 6, and f - C - S. Finally, elimination of va: h 6h 0 • 4, --n --n --n --n

from (2.14) yields the nrf-th order nonlinear algebraic system

E U = (2.15)

where

E = M + h D + h h K + (h- h) G

,q = [,M + h 6 (D-G)] -h U + hB &-l hV + h8 h5 n (2.16)

-I
G A B

The selection of a common LMS operator for both u and v is natural if the

analyst wishes to keep similar discretization accuracy on both vectors. in

this case, Eqs. (2.9) become

U b
Un + a n h n -+ hb

-n 8 -~t(2.17)

VV
V + --a = h v n + h b n

and the components of (2.15) simplify slightly to

2
E = M + h D + h 2C

_q + h8D-) A

2-4
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The coefficient matrix E becomes indecendent of the choice of A and R in

this case, as noted by Jensen 161.

Remark 1. The generality of the discretization (2.7), in which different

LMS operators may be used for u and v, has two important advantages. First,

the use of different approximations for u and v is allowed, should that prove

desirable on account of the physical meaning of v resulting from specific

choices of A and B in (2.2). Second, special two-derivative integrators devised

for treating the second order system (1.1) directly, such as the widely used

Newmark [10], Houbolt [111, and Wilson [121 operators, can be presented as

special cases of a slight extension of (2.7), in which a historical u-term

is appended to (2.7b), as shown in Reference [1]. It follows that a separate

study of the computer implementation of these methods is not required.

Remark 2. If h$ # h6 , the choice of A and Z should be such that G = -B

is symmetric and maintains the sparseness characteristics of the structural

matrices. (All of the choices discussed in Section 2.5 comply with these

restrictions.)

kemark 3. If two different A-stable operators are used for u and v, and

B is nonzero, the resulting system (2.14) is not necessarily A-stable. Sta-

bility conditions have to be checked out in advance to avoid surprises.

2.4 Computational Paths for Implicit Integration

"Implementations of the implicit integration procedure outlined in the pre-

ceding section may differ in two respects: (a) the selection of weighting

matrices A and B in (2.1), and (b) the manner in which the resulting

auxiliary vector v and its temporal derivative v are computed at each step.

We deal with the latter topic first.

Three basic computational paths, labeled (0), (1), and (2), may be followed

in advancing the discrete solution over a typical time step. The associated

sequences of calculations are flow charted in Figure 4.

The path identification index, (0-2) , gives an idea of the number of backward

2-5
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difference operations performed in the determination of v and v in each

solution advancing cycle. It is shown in Reference 12j that this index

plays an important role in the error propagation behavior of particular

implementations.

Path (0) is consistent with the first-order difference system (2.14), i.e.,

the computed vectors satisfy this system exactly if computational errors

are neglected and the solution of the nonlinear system (2.15) is iterated to

convergence. (The solution error can actually be regarded as a component of

the "local" computational error [2j.) The original O.D.E. system (1.1) is

also satisfied. On the other hand, the computed u , u and v do not, in-n --n -n
general, verify the auxiliary vector definition (2.1), which is satisfied

only in the limit h - 0.

A slight variant of path (0), labeled (0'), is also shown in Figure 4. In

this variant the velocity vector un_1 is recomputed so that (2.1) is verified

at past stations. This "delayed correction" is not only expensive for general

A and B but worthless as regards improvement of error propagation character-

istics L1,21. It is included in Figure 4, however, because it occurs natura.ly

in the conventional choice v = u discussed in Section 2.5.

Path (1) satisfies both differential expressions (1.1) and (2.1) at the

expense of (2.14b). Finally, path (2) enforces the v definition (2.1) and

the difference system (2.14) at the expense of (1.1).

2.5 Selection of Auxiliary Vector

The computational effort per time step (and, to a lesser extent, the storage

requirements) can be significantly reduced for certain choices of A and B

because some of the computational steps displayed in Figure 4 can be either

simplified or entirely bypassed. The following two selections were studied

in detail in Reference [1] for linear dynamic problems:

v = u (AM ,B(.19M ,B1 0) (2.19)

z = u + D u (A I , B D ) (2.20)

2-7



Equations (2.19) and (2.20) were labeled the conventional (C) and Jensen's

(J) formulations, respectively. When these two choices are combined with

the four corrputational paths of Figure 4, a total of eight formulations

of the advancing step result. The comparative study carried out in

Reference [4'1 identified the following combinations as preferable:

(Cl) Minimizes computational effort for umdamped systems when used

in conjunction with backward-difference operators and requires

less vector storage than (JO), but does not possess favorable

error propagation control properties.

(JO) Minimizes computational effort per step for generally damped systems

and has excellent error propagation control properties, but requires

additional vector storage.

In both these formulations, the presence of an ill-conditioned or singular

mass matrix M does not cause any particular difficulty. There are also no

problems associated with the starting procedure. Similar conclusions can be

extended to transient nonlinear analysis handled with the pseudo-force

approach. The optional corrective iteration cycle shown in Figure 4 does not

affect computational effort rankings provided invariant calculations are

moved out of the loop. The computational sequences associated with the (Cl)

and (JO) formulations are shown in Tables 1 and 2, respectively.

Additional formulations of interest in the nonlinear case are obtained if

matrices 4 and B are allowed to be stepsize-dependent. For example, the

selection

z = M u + (D+ hB K) u (2.21)

in conjunction with path (0) leads to a variant of the (JO) formulation

that will be denoted by (JOK). The associated computational sequence is

shown in Table 3. Its more interesting feature is the relocation of steps

(a) and (b), which is believed to offer some advantages in array manage-

ment if an iteration loop is applied.
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Table 1

"COMPUTATIONAL SEQUENCE ASSOCIATED WITH THE (Cl) FCRMULATION

Step Calculation

hu h

S:---:: - i U~ ~ (r vi l

d hu - h bU aU
--n --n --n

e M + N 2h + D+h h K

f Predict or re-evaluate C , S
•-nii

g (M +hD) hu + he Mh + h, hoQgn = ( h- -n ---- n -c-n

h u =n
am--

Optional Iteration (2)

i u (u h- - -)/h-

NOTES:

(1) E is assembled and factored only occasionally, cf. Section 3.

(2) If iteration is used, calculation of the invariant portion of
n should be moved outside the loop.
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Table 2

CCOMPUTATIONAL SEQUENCE ASSOCIATED WITH THE (J0) FORMULATION

Step Calculation

a vn- 2z - K U--

b vV--

b n +h- vI__-n-i -n-- -i +t n-i

I. v dV Vcn =hd - c
--n -n -- n

d u u U
d hb -a
-n --n -n

e E M + hN D+ A6 hSm

f Predict or re-evaluate C , S
n n

S= hu + h +h h
-f1 5-r B-n S 3-a

hu n = E 1 9 -n

(2)
u = Cu -hU)/h• Optional Iteration
- n %

NOTES: (1), (2), see Table 1.
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Table 3

COMPUTATIONAL SEQLENCE ASSOCIATED WITH THE (JOK) FORMULATION

Step Calculation

hv dv v
h = hd -c
-n n~ --

d hu h bu au
-n -n -In

(1) 2
e E M M+ h D hp~

f Predict or re-evaluate C S -4 -
-n --na v"

hn = Mh h hv + h• 2
S--n --n -n

1-iU = E"
-n ~ -n

(2)
- h') Optional Iteration -2)

-n -- n'-

b v h + h vn-n -n 3

NOTES: (1), (2) see Table 1.
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similarly, the use of the auxiliary vector

v M u -( h hu) = hu (2.22)

in conjunction with path (2) allows a similar relocation of steps (a) through

(b); its practical value has not been assessed, however.

Table 4 provides a "snapshot" view of vector structures involved in the pro-

gramming of the (JOK) sequence. The flow of computations required to advance

the solution over the n-th step is indicated with arrowed paths. (Similar

diagrams for the (Cl) and (JO) sequences can be found in Ill.)

2.6 Primary and Secondary Computational Variables

In the formulations discussed in previous sections, the displacement vector

unU, which is obtained from solving (2.15), is called the primary computational

variable; the other three state vectors (u , v n Vn ) are ýecondary or derived.

We could have solved (2.3) and (2.12) for another state vector. For

example, the counterpart of (2.15) for the velocities is

E u = - (h K + G) hu + A-1 hv + h (2.23)

The displacements u would then be computed from (2.12a); thir sequence--n

effectively reverses steps (h) and Ui) in Figure 4. (Corresponding systems

for v and v are considerably messier for general A and B.)

If exact arithmetic were used throughout, the selection of primary variable

would be irrelevant. The choice does matter, however, if computational error

propagation is considered. Generally speaking, the state variable of main

interest in the analysis should be selected as primary. For structural

dynamics problems, displacements are a natural choice. In fluid-structure

interaction problems, however, structural velocities are of utmost concern and

have been used as primary computational variables in the implementation of

staggered solution procedures [131.
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Table 4

VECTOR STORAGE ARRANGEMENT FOR (JOK) FORMULATION

Multistep Historical Previous Step Current Step
information (missing if m=l) information Information

U 2un--1hn u-n

-_ ru_n- _-m n _=-- 1]

_n-n 32. _

-n-rn n-2 nni
---

--- ATabeI

NOTES:

1. if a pair of backward difference operators (b d =) is used,
information enclosed in brackets is not required for advancing
"the computations, and those computational steps identified by
broken-line paths may be omitted.

2. If iterations are applied, the arrangement is slightly more
complex, since invariant vector portions must be removed from
the iteration loop.
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2.7 Explicit Interation

If two explicit integration procedures (ý = 5 = 0) are selected in (2.7),0 0

the computational sequence becomes

U 
h

-n -n

v hVV = hv
-n -n

(2.24)SA-1 -

u M A (v -B u)

v = A ( - Ku -n u n B 4 -u

Economic execution of this sequence demands the presence of a diagonal (and

nonsingular) mass matrix M. In addition, the conventional formulation
• ~-l,

v = , = (A = M B = 0) simplifies the last two steps. The third one

becomes trivial, and the only significant matrix-vector operations occur in

the last step (acceleration calculations).

The "full-step" sequence (2.24) should be avoided in practice, however,

because of its poor error propagation characteristics. The so-called "half-

step" or "half-station" formulation is much preferable:

U = hu-n -n

= = M-1 ((2.2

-- n - n-Kun

The summed form [7] of the central difference method can be presented in this

form [14]. Difficulties arise, however, if the system is damped because the

velocity term u in (2.25c) is not readily available in this implementation.

Reference 1151 discusses various ways of circumventing this problem.
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2.8 The Tangent Stiffness Approach

We close Section 2 with a brief review of the tangent stiffness approach to

nonlinear structural mechanics. Assume that the computations have proceeded

up to t - t . Irtroduce the increments to the next time station:n

def
Az = z -z (2.26)

where z stands for any variable vector such as u, u ...... etc. The effective

fortce increment is linearized as follcws:

AO = Af c - C - ASn

= Af - (, + S ) Au - C. AZ + o( lu!1 2) (2.27)
nT ý-U -, - -a

in which C., C and SS denote the matrix Jacobians of C and S with respect to

u and ai, evaluated at t n. The tangent stiffness equations can be derived as

follows. Insert a A in front of every variable state vector in (2.3) and

(2.12), replace A2 in (2.3) by the linear portion of (2.27), eliminate Au,

Avn and Avn as in Section 2.4, and finally divide through by hah . The result
is the "quasi-static" incremental counterpart of (2.15) (see also [3]):

K Au = H + Af (2.28)

where

-h 1  -1 -1 -1
SK =K + C + S + h ( + c) + (hN -h G + (h h

H =[Ch~h6)l M + h 1 (2-2)] + h6
1I A 1

(2.29)

v hv -u +h L_-n -n+l -n n

V
i hv - v +hv

n -n+l -n h5 -n

In (2.28), K is the tangent (dynamical) stiffness and H is a historical force

vector.
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In the "purely incremental" application of this approach, Eq. (2.28) is

applied at each step to advance the solution by Au and no correction is

applied at tn+1 to account for the truncation error in (2.27). In large two-

and three-dimensional problems, this naive procedure incurs in enormous com-

putational expense in forming and factoring K at each step while achieving

only first-order accuracy (regardless of the accuracy of the integration

operator). A better strategy is to apply one or more corrections at t
n+l*

This helps in balancing the accuracy of the integration formula with that of

the nonlinear force calculations.
5*

If K is maintained constant over many steps and recomputed only as needed

because of strong nonlinearities, a restricted, "tangent-updating" version of

the pseudo-force method results. As noted in Section 1.6, a more general

strategy is emphasized in this paper. By judicious selection of the reference

"secant" matrices in (1.1), highly nonlinear problems have been processed

without a single recalculation of the left-hand side matrix E in (2.15).

2-16



Section 3

INTEGRATION METHODS

3.1 General

Three major aspects of integration methods for nonlinear structural problems

are covered in this section; stability and accuracy characteristics of

integration formulas, stepsize changing techniques, and automatic stepsize

selection strategies. Throughout this section we use the term "method" to

represent the synthesis of these three aspects.

The question of stability of implicit formulas for nonlinear problems is far

from settled and will undoubtedly continue to receive much attention. A

review of some promising results is given in Section 3.2

The bulk of the literature on integration methods is concerned only with

algorithmic properties (stability and accuracy) of fixed-step integration

formulas. In practice, these properties are seldom preserved when the step-

size varies. Moreover, in implicit methods, the dynamic coefficient matrix

has to be formed and factored whenever the stepsize is changed. We use here

the term "step changing technique" to denote the set of rules and procedures

for minimizing the effect of stepsize changes on stability and accuracy of the

fixed-step formula, and for reducing the computational effcrt involved in each

stepsize change. This is dealt with in Section 3.3.

Automatic stepsize selection strategies are the most talked about but least

advanced of the three aspects. Two crucial questions in computational struc-

tural dynamics are: How can an explicit solution process be kept stable when low

accuracy is requested, and how can an apparently stable solution computed by

implicit methods be guaranteed accuracy? In Section 3.4, we present a pro-

mising step selection strategy for explicit methods which has been shown to

be both robust and reliable, and which is aimed to answer the first question.
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For implicit methods we also list promising error control criteria and give

an appraisal based on somewhat limited experience.

in Section 3.5 we mention some of the new approaches aimed to solving

effectively special classes of problems. Finally, we list some of the pro-

mising areas for future research in Section 3.6.

3.2 Stability and Accuracy of Multistep Methods

Let us consider the homogeneous, undamped nonlinear case with identity mass

matrix

+u + 2 (u) 0 (3.1)

Following Prothero and Robinson f16], we approximate (3.1) in the neighborhood

of the numerical solution u y as

(u ) -= 7u - (U) (3.3)

The (Cl) implementation of (3.2) using (2.16), i.e., the same integration

formula for u and u, yields after some manipulation

k

where

a%. I-6. hI 1

A 1 2

A, a h a IA.1
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(n. - )_i
n -- . I

(U 1 -i

(3.4)

k

1 CL h6azv -h i
j=0

-n kc( a (a i4. + hi.i -O.i
j-=0

The stability of multistep formulas for model nonlinear equations (3.1)

can be assessed from the characteristic equation

det j kiA. = 0 ; ,,.i • 1 (3.5)

and the local error is obtained from (3.4) by taking {E ,= 0; j=l.. k}

A- -nT (3.6)

to a _calar problem. For the trapezoidal rule (a -a, = 1, 3 = =.5),

o _-. - o - 13o61

Equation (3.5) becomes

(X - 1)2 + h 2  W2 X + W2 0 (3.7)
4 -nn -i

from which one obtains the local stability condition of the trapezoidal rule

_ n ? wn-i (3.9)

The stability condition (3.8) implies that the trapezoidal rule is locally un-

stable for spring-softening in the sense that the solution perturbation grows

(see FLg. 5) , viz.,
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u - (3.9)

n Yn

This undesirable property was pointed out by Gourlay 1171 for first-order

parabolic equations and for second-order hyperbolic equations by Park (18,19j,

in which a pathological case was presented. For bilinear-spring models,

several pathological examples were presented by Hughes 1201; detailed condi-

tions for unstable solutions were recently derived by Westermo [211 by the

phase-plane technique.

The local error is easily computed from (3.16)

+. h"n -nhh (Qn +Qne
0 4 -nYn -i n-1 4 nn-n

2 -2 (3.10)
2(1+ 22 ) + 2h n-

from which two asymptotic cases are obtained

h2 h3 ""h-

.c ::: (3.11)

(w h)2 n-l nl n

The asymptotic expressions (3.11) show that the local error can be made small

for the two extreme frequency components. However, nothing can be said from

(3.10) as regards the magnitude of the local error corresponding to intermediate

frequency components. In a practical context, this implies that even though

the stability condition k3.8) is violated for the two extreme frequency zom-

ponents, the absolute error magnitude will most likely remain small and may

not be detected. This suggests that the instability of the numerical solution

bý the trapezoidal rule becomes noticeable when it is caused by intermediate

frequlency components as explained in i22j.
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The source of the instability of the trapezoidal rule for certain nonlinear

"problems was attributed to the use of historical derivatives in [18].

The effect of historical derivlatives can be eliminated by adopting one-leg

formulas, which are obtained by selecting

k

2. 1 , = 0; j = 1,..., k (3.11)

j=0

Notice that backward difference formulas are a special class of the one-leg

formulas. Let us consider the midpoint implicit formula, which is the one-

leg adaptation of the trapezoidal rule, viz.,

u n u + - un n-i 2 Un

Un n-i (3.12)

where dn 1 • (u + Uni)

The characteristic equation for the midpoint rule (3.12) is

2h2

2 2wh 2
(A-1) 2+ ni-_ CA+l) 2= 0 (3.13)

which indicates stability regardless of the possible variation of w . The
n

local error is obtained in the form

x + i Yn n-1 a Yn-1  2 n

h h2 wnh 2 1h

-2 1.~ + ~. + h* (3.1-4)2 •" 1 -• I Yn-i ÷ (n} 3 5n-i

2 (1 + w 2hn

Therefore,
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2
- • vn n h D

S..(3.15)c 
h Yn W h-

(w h)
n

The comparison of the two asymptotic error expressions (3.11) and (3.15) shows

that the trapezoidal rule is more accurate than the midpoint rule for nonlinear

problems provided

- )(3.16)

The two one-step formulas have been used to integrate the model nonlinear

problem (see Park [18])

+u 1 00 tanh (u) = 0, u(O) = 0, u(0) = 25 (3.17

The results show that the midpoint rule gives stable solutions for all stepsize

ranges tested while the solutions by the trapezoidal rule becomes unstable

for stepsizes h > 0.2. The interested reader is referred to recent work by

Dahlquist 1231 for the stability analysis of multistep one-leg formulas.

3.3 Step Changing Technique

A proper choice of implicit integration formulas can ensure numerical stability

without stepsize limitations (the so-called A-stability). The stepsize is

then established solely from accuracy considerations. Exploitation of

this favorable property is often difficult, however, because of the computa-

tional overhead associated with stepsize changes. These difficulties are

examined in Section 3.3.1, which is followed by the presentation of an improved

matrix scaling technique [24]. This technique accommodates stepsize changes

without requiring a recalculation of the matrix E in (2.15). Applicable

ranges of this technique and the importance of associated predictors are

examined in Section 3.3.3. Finally, the effect of stepsize changes on the

stability of the integration formula is discussed in Section 3.3.4.
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3.3.1 Difficulties in Variable-Step Tmplicit Methods

We recall Equations (2.15) and (2.18) for the reader's convenience

E u n g1

5() =M + 6 D + 6 2 h = h (3.17)

-- = Mhu +hV 520

-n M -"+6v-n -11 .f

The stability properties of the integration formula (2.17) can be maintained

by solving (3.1 7 a) accurately by a convergent iterative method. If the mass

matrix M1 is diagonal, the following predictor-corrector iteration schene

appears at first sight attractive:

-- -(m~l) M- (m) (m) (3.18)

-,n z-["n - -- nJ

(This results from splitting E = M + (6 D + 52 K) and transferring the second

term to the right-hand side.) Unfortunately, it is well known that (3.18)

converges only if

c• h < 1 (3.19)
max

where c is a constant of order unity. The stepsize restriction (3.19) is

of the same order as that imposed by explicit methods. Thus, (3.18) wipes

out the basic advantage of implicit integration- The A-stability of implicit

formulas can be retained by using the Newton-like iteration

E~m (< _ < ) () m) (in)

E(M) m6)4 (m+) u ) = (M) - E (m ) (u (3.20)

Notice that for linear problems, i.e., constant E and i (3.20) gives the
(0)

converged solution with one iteration regardless of the predictor u n

If the stepsize is varied, the matrix (new ) has to be refactored. This

can be costly in practice and is a major barrier to the effective use of

implicit formulas for variable step integra=ion 'of the equations of motion.

A means to overcome this difficulty is described below.
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3.3.2 Matrix Scaling Technique

Let us express the matrix E(6) in the form

E(6) = -- E(3 ) - R (3.21)
-

where s is a scaling parameter and R is a residual matrix to be determined.

Substitution of (3.21) into (3.17a) yields

SE(6) u - s (g + Ru) = 0 (3.22)

where the residual matrix R is

R ( - l)M+ _) + ( _ 62 K (3.23)

An iterative method for (3.22) takes the form

(m+l) (- um)
- = n E (5) (in + R u (3.24)

Notice that we have freedom for improving this iterative method by choosing
the scaling parameter s and predictor u appropriately. The convergence

of the iterative method (3.24) can be conveniently examined using

the scalar case

M = 1, D = 2ýw and K = w 2  (3.25)

The spectral radius of tne iteration matrix becomes

-l(l-s) + 2(6 -s6) Cw + (52 ..6Z) w2

K [S E (6 ) RI = o 0 (3.26)
0 1 + 2 ýw6 + Ws

0 0

a) Fixed-step case (s=l, 5 - 6). The spectral radius is zero from (3.26)

and accordingly the solution converges with one iteration as it should.

b) Variable Step Case (6 6 6). This corresponds to integrating with a

stepsize other than the factored stepsize 0 . If the system is undamped

0), the optimal scaling parameter is
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1 + s2 w2
0

s = (3.27)
1+ •

F-r the multidimensional case, the choice (3.27) with w = w , a "scaling

frequency", gives

f lnI -1) (2 -
K -(3.28)

(1 +- 22) (1 + ,22)

in which r = 5 /5 , 5 = W.
0

The case 2c = 0 and n > I was investigated in [25] and some preliminary

performance data was reported in [5]. If n 1 1, (3.28) shows that c'u

is probably adequate.

Global convergence for the entire frequency range is obtained with the following

choice of the scaling parameter:

(n 2 - 1) 22 1

1 + 92 Q2

S- (3.29)

( 2- (2 ,q(2  S1q2) 1 + n22
max max

(+ +2 2 ) (1 + n202) 1 + g2
max max

As can be seen from (3.29a), the spectral radius < for n > 1 rapidly approaches

unity as the sampling frequency 2 increases. This restricts the choice of

predictors to extrapolation from displacements only, because the inclusion of

velocity terms in the predictor can generate large errors in the predicted

displacements which contain high-frequency components.

On the other hand, when 1 = 5 /6 < 1, the spectral radius of (3.29b) approaches

unity and zero for low and high frequency components, respectively. A desir-

able convergence property is to obtain as small a spectral radius as possible

for the "accuracy" range 0 < wh < 2 and to bound the spectral radius below
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unity for the "noise" range wh > 2 for iteration stability. Note, for

example,that the globally convergent choices (3.29) yield

1 1 , 1 >> 1 1 2 i

1 + 2

(3.30)

(J - n.2) ((22 - 1)
n m) axm1 , ICC 1 ; 2 -1

(I + 22  (1 + (22)
max

This indicates that both cases give a poor convergence rate in the accuracy

range as the integrating stepsize 6 deviates further from the factored stepsize

6 .
0

3.3.3 Improvement of Low-I---uency Convergence Rate

In order to improve the convergence rate for the accuracy range 0 < uh < 1,

we introduce an acceleration scheme

(m+l) u (i) (mm-l) (re+l)u = Cu + ai-l ) U (3.31)

where r (rn+l) = s E -I + R(s) u (m) (3.32)

Combining (3.31) with (3.24) one can derive the following error equation

(m+2i) _ (m+l) (mn) -i (m+J.)
r = a r + (1 - a) r -( s E E R r (3.33)

-" -

The stability and convergence properties of the acceleration scheme (3.31)

can be evaluated from its associated characteristic equation

I2 I - (a I- s E Z Z•) X+ (a - 1) I = 0 (3.34)

It can be shown [24] that stability requires that
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o < a < 2, B (I + £22) [(1-S) + (n2 - S) Q21 < 2a (3.35)
(I + n 2 n12 )

The conditions (3.35)are satisfied by the choice

CL ma + '4 min_____4 _ (3.36)
a = 2

where ji's are the eigenvalues of the system

(s E( 6 ) Z(6S -1)Y (3. 37)

The convergence rate K of the acceleration scheme (3.31) can be expressed as

K =a/miI (3.38)

l+FTFTalmi

Consequently, the narrower the spread of the eigenvalue spectrum, the faster

the convergence rate.

When the integration stepsize 6 is larger than the factored stepsize So, i.e.,

q /8 c 1, one obtains
0

u1 - ( 1-2) 11 + 0

n2) PP S1(3.39)

0. 17 (1-n2) /T 2  
, 22 -r0.44/ni2 ;2 Q njl

where we have chosen the scaling parameter s and the constant a2 as

s = + ______ (3.40)

1 + a2
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a = (1 + p n2) 1,2 (3.41)
max

The preceding asymptotic estimates of the eigenvalues of (3.37) indicate that

if Q is accurately known and Q 6 /6 -, one can achieve a rapidly con-max max 0
vergent scheme through the acceleration (3.31).

A similarly favorable convergence rate for the case q > I is harder to achieve

and requires alternating iterations with two different factored matrices [24].

3.34 Effect of Step Changes on Stability_

There are two techniques for incorporating step changes in the multistep
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integration formulas: interpolation of past solutions to represent solutions

at equal intervals of the present stepsize and use of variable coefficients

in the integration formulas. In general, interpolation recuires additional

solution vectors to be stored for preservation of the fixed-step accuracy and

stability. The introduction of variable coefficients alleviates the addi-

tional storage requirement, but is known to cause instability if the stepsize

is varied too often [26]. Figure 6 shows the stability region of a three-step

formula [18] as adopted to variable coefficient technique in the form

a u n+1 n + 1 2 Un-1 a3 u n-2 +hnl

where

(2 + 1I)
a = +

1n 1 (1 + I + n2

(1 + (1) (1 + 2n + 2n2)
, - 2n 1  (nl + l2

(3.42)

1 ( + 3n1)

2 2n2  (1 + n)
1

1(1 + nl)

3  2 (1 + ni + 12) (n1 + r2 T2

and

T11 h n /hn+l 2 = hn-l /hnn+l

Note from Figure 6 that a decrease in the stepsize shrinks the unstable zone

and results in an increased numerical damping as the stability boundary departs

further from the imaginary axis. An increase in the stepsize, on the other

hand, expands the unstable zone which includes a segment of the imaginary axis.

This segment will cause local instability if the combination of frequency

contents and the stepsize,
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STEPSIZE INTERVAL

n-3 n-2 n-1 n

A B C D El F

1.0 2.0 1.0 0.5 1.0 00.625

1.0 2.0 2.0 0.5 0.5 0.625

Im (wh)

D

6

5 F

4

3

2C

UNSTABLEREGION

-2 -1 0 1 2 3 4 5 6

RE (wh)

Fig. 6 Effect of Uneven Step Thterval on Local Stability
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uh, falls in that zone. It is also noted that the fixed, k-step formula is

-ecovered at k-th step after the stepsize is changed.

How seriously stepsize changes affect the global stability and accuracy has

not been systematically studied yet. Experience indicates that, for k-step

formulas, the effect is insignificant if the stepsize is varied at most

every 2k-th step.

3.3.5 Step Changing Techniques for the Central Difference Formula

The effect of step changing techniques on the stability of explicit formulas

is more pronounced than on implicit formulas because the stability margin of

explicit formulas is quite narrow, mostly wh < 2.0. We present a relevant

portion of the results from [27] for the central difference formula. Of

the four techniques considered (see Table 5), the velocity averaging technique

(FAVE) is most desirable for undamped problems, whereas the variable coeffi-

cient technique (FVCO) outperfoQrma the rest for heavily damped problems. As

in the case of implicit formulas, the question of how often the stepsize can

be changed without a noticeable affect on the global solution accuracy has

not been satisfactorily resolved yet.

3.4 Stepsize Selection Strategies

The earliest known numerical integration method is due to Euler [28,29].

By 1973, the number of publications had grown to over 600 [30] and over 50

articles are published every year. Of these, at least a dozen are directly

concerned with the class of stiff-oscillatory systems to which structural

dynamic problems belong. Adequate stepsize selection strategies for non-

stiff parabolic problems exist [31] and some promising strategies for stiff

parabolic problems have been published [32]. The authors are not aware,

however, of many publications that deal with stepsize selection for stiff

oscillatory problems.

The paucity of publications is apparently due to the fact that low-accuracy

solutions (e.g., two correct digits) are acceptable for many structural
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Table 5

FORMULAS FOR STEP CHANGES

Technique Formula

•n+ý -n- + -C..n
Variable Coefficient u u 2 n n-i

(FVCO)
n+l n -n+½

u =u + h u
n

S•n÷• 1 "n-ý 3] ,)n- n
Average Velocity n - (l-r) + h n

---- •."(FAVE)
n+l n n+ý-u =u +h u

n

n+ý 1 2 un-S 2 ( n- 3  ýn

Extrapolation U a [(7+r ) - u 2] + hu
(FEXT)

n+l n n+ýui =u +h u
n

• n+ý "n-12+1h+h [3r n+(-sa'Interpolation u = nu + n(h h+ n (r

(FINT)
n+l n h n+½U - u + h un

1) r =hn/hn-l

2) All the above formulas recover the basic formula (2.25)
when r = j.
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dynamic problems, while most of the available stepsize selection strategies

are based on the truncation error concept, which is effective chiefly for

high-accuracy requirements.

For variable-step explicit integration, the ability of detecting local

(incipient) instability is mandatory. For implicit integration, the ability

of maintaining a given accuracy level is essential. A general-purpose inte-

gration package should therefore have the ability to monitor both cases

depending on the integration mode, and transition from one mode to the other

should be governed by anticipated cost minimization. We now examine these

goals in more detail.

3.4.1 Explicit Variable-Step Stratejqes

in low-accuracy explicit integration, the detection of instability becomes

a major concern. This requires an accurate assessment of the highest 1re-

quency of the system. Experience shows that this is not a simple task in

nonlinear problems, and repeated calculations to that effect can be costly.

Numerical experiments have shown that monitoring the truncation error as

stability guard is generally useless. Of several empirical techniques

proposed and tested so far, the following "perturbed apparent local frequency"

concept has been found to be reliable and efficient. The perturbed apparent

frequency w a is defined as

2 Au. - u (3.43)
aj =2

Au.

which can be expressed for linear homogeneous equations as [27]

Wa2 E q = 1 . nf (3.44)a• ,ý Aq f..

where t. is the i-th cclumnr eigenvector and £ is the uncoupled modal displace-

ment vector from the relationship



u = T; (3.45)

Remark 1. The qualifier "apparent" is used here to emphasize only those

frequencies that are participating in the dynamtic response. For example,

a structure under free-fall gravity motion exhibits only the rigid-body

motion (zero frequency). In this case, (wa) max is zero and any arbitrarily

large stepsize shculd yield an exact solution, which is confirmed by numeri-

cal experiments [33].

Remark 2. The highest frequencies participate in the dynamic response at

early time and may hardly participate at a later time. The apparent fre-

quency concept should in this case result in an increased stepsize at the

late time period, which appears also to be the case.

Numerical experiments indicate that the step selection strategy based on the

apparent-frequency sampling theory outperforms all other strategies

tested. Further refinements cf this sttategy are expected by experimenting

on large-scale problems.

3.4.; Implicit Variable-Step Strategies

Four strategies for stepsize selection in implicit integration will be

mentioned. They are based on the local truncation error, residual term,

Richardson's extrapolation and deviation from linearity, respecL vely.

The use of the truncation error is well known and need not be further

explained, see e.g. [7]. The residual term d is the difference between the

acceleration computed from the differential equations of motion (1.1) and

that computed from the integration formula (2.7b):

d = u(u ,u ) - (i± -nhU)/h (3.46)- --- n -n n n

An approximate local error e can be expressed [34] as

-2
E = u(t )-u L-- d (3.47)
-n - n -n p+l -n
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where p is the order of the integration formula.

The strategy based on Richardson's extrapolation uses the difference
1

between two solutions obtained with stepsizes h and 1 h, respectively, to
2express the local error as

C 'u (Ih) -u (h) (3.48)-n 2 -n

or a similar estimate of e when smoothing is performed [33]. Limited-n
experience suggests that the residual term estimate (3.47) is far more reliable

than the truncation error. The estimate (3.48) is the most reliable of the

three, but requires at least three solutions per step. In future numerical

experiments, error estimation by extrapolati-no at every tenth step is con-

temnplated to reduce the computational overhead.

Finally, the deviation from linearity can be used as stepsize selection

strategy. This works effectively if the major source of error is due to

system nonlinearities and one has a priori knowledge of the linear behavior

of the system. This option is attractive in those cases where the analyst

performs a linear dynamic analysis first and then decides to proceed to a

nonlinear analysis on account of critical design considerations.

No consensus as to which strategy is most suitable for structural dynamic

analysis has been reached as yet. In fact, this constitutes an important

area of near-future research (of. Section 3.6).

3.5 New Approaches

It should be clear from previous sections that the rflative performance of

explicit and implicit methods depends on problem characteristics, user

requirements (especially accuracy level), and the computer cost function.

The two methods can be applied concurrently over different portions of the

structure [36,37] or in an interleaving manner so that the integration pro-

cess alternates between the two modes according to a cost minimization

criterion [38].
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A combination of explicit integration and mode superposition methods can

be usea to increase the effective integration stepsize. Knowledge of a set

of high frequency dominant eigenvectors allow the corresponding subspace to

be annihilated from the equations of motion [39]. The net result of this

technique is an extension of the maximum stable stepsize for explicit methods;

this gain may be significant for certain classes of problems.

It may also be possible to combine the traditional Rayleigh-Ritz method

with implicit methods. Direct time integration would be used only occasionally

to evaluate errors in the Rayleigh-Ritz approximations and, if necessary,

to trigger the injection of additional sets of trial mode shapes. Such an

effort would probably shed some light on the usefulness of the so-called

exponentially fitted formulas from an engineering application viewpoint.

The classes of problems for which each of the aforementioned approaches

become advantageous has not been fully explored, and more extensive testing

will be required before definite conclusions to this effect are reached.

3.6 Areas for Future Research

The increasing importance of dynamic analysis in design and verification of

complex structures has given renewed impetus to research activities in

direct time integration methods. During the past decade, significant progress

has been made in the following areas: techniques for stability/accuracy

assessment in linear problems, qualitative assessment of effect of nonlineari-

ties on stability, comparative performance rating of multistep formulas on

various nonlinear model problems, and spatial hybridization of explicit and

implicit formulas.

Three important near-term research areas will be mentioned. The authors

believe that the most important one is the further development of stepsize

control strategies for implicit integration methods. Progress in this area

would facilitate the production of cost effective dynamic analyzers that can

operate with the same degree of reliability as that of presently available

static analyzers, and hence attract interest from practicing engineers.
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A second area involves the systematic study of cerformance crossover noints

between explicit and implicit methods for a given computer environment and

a set of representative problems. The crossover point can be expected to

depend not only upon the required accuracy level and the stepsize selection

technique, but also upon the computer characteristics and the quality of the

supporting software. Resolution of this topic would simplify the implemen-

tation of problem-Adaptive temporal switches between both integration modes.

A third area pertains to the study of the influence of formulations and

computational procedures for nonlinear problems on the atability of the

integration formulas. (In other words, investigation of the interaction

between sections 2 and 3.2.)

Finally, as a long-term research topic, we should mention the potential

impact of new computing equipment on the performance of direct time inte-

gration methods. Some of the techniques which are currently deemed obsolete

may turn out to be most suitable, or new formulas and procedures may have yet

to be developed to fit new computing environments. At the present, however,

the development of new integration formulas is not likely to advance the

state of the art as significantly as that of the three near-term areas.
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4. CONCLUDING FEhA.iKS

substantial computational cost reductions, of the order of 2 to 50,have been

observed as a result of the use of the generalized pseudo-force approach over

the conventional tangent stiffness approach. Another cost reduction of

roughly 2 to 5 can be achieved by paying careful attention to implementation

details. The total gain can thus span one or two orders of magnitude.

An important consequence is that nonlinear dynamic analysis can no longer be

regarded as being orders of magnitude more expensive than the corresponding

linear analysis. For sufficiently large problems the array-processing effort

involved in the solution-advancing cycle dominates over that of evaluating

nonlinear terms. Under such circumstances, and assuming identical inte-

gration-driving software, the (nonlinear/linear) cost ratio per time step

is close to unity in explicit integration. For implicit integration, the

ratio depends primarily on the number of iteration cycles per step if refac-

torizations are avoided, and typically varies from 2 to 5. These significant

cost reductions have been translated into Figure 7; this is an update of a

chart prepared in 1976 [3), which reflected the then prevalent use of the

tangent stiffness approach.

It is hoped that the improved computational efficiency, when coupled to the

increased reliability brought about by the problem-adaptive techniques

discussed in Section 3, will eventually result in brclMer usage of

transient nonlinear analysis by practicing engineers
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Appendix A

COMPUTER IMPLEMENTATION OF DYNAMIC ANALYSIS

A.l OrganizatiDnal Approaches

Two philosophies may be followed in the implementation of transient response

analysis capabilities.

1. Tghtly Coupled Processors. The analysis control is embedded

within the framework of a specific structural analizer.

2. Loosely Coupled Processors. The analysis control is segregated

as a modular "driver" processor, which is interfaced with existing

analyzers through a data base management system.

(A similar choice appears in other application programming areas such as

optimization and synthesis, in which a general purpose driver processor

controls analysis processors.)

The first approach offers the benefits of expedience and potentially high

computational efficiency, inasmuch as special analyzer features can be

exploited. It is indicated if the development is carried out by the

designer of the analyzer, or a tightly knit team that includes the

designer. The main disadvantaqe of this approach is the sacrifice in

flexibility of application, main-ainability (the ability to repair errors),

and modifiability (the ability t. make functional changes). Furthermore,

if the structural analyzer is 'ery complex, or is adjudged proprietary by

its source, this approach may be unfeasible.

The second approach is consistent with present trends as regards

construction of data base linked program networks [40]. Consequently, it

is believed to offer the greatest potential on a long term basis. It is

particularly appealing when several existing analyzers, some of which may
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be unmodifiabl., are to be interfaced with the same integration driver.

one drawback of this approach is the need for considerable attention on

the part of the developer to the overall design of the program to avoid

"downstream" surprises. Separable driver operation also presupposes the ready

availability of a library of supporting matrix processors as well as that of

a scientific data management system. Because of the long-term nature of the

development effort, this approach, which is the one discussed in the following

sections, is not necessarily suitable for every programming group.

i !A.2 The Players

Many industrial and engineering organizations maintain a library of structural

analyzers. These are either acquired from external sources or, if the

organization is sufficiently large, developed in house. Most of the analyzers

will be linear, some nonlinear; in the latter case, a restricted problem

application range is the norm rather than the exception.

Another intervening software element is the time integration control module,

herein called the integrator (1) for brevity.

The function of the analyzer (A) is to generate the discrete dynamical

equations, i.e., the components of (1.1). The integrator advances the

state solution by following one of the computational sequences discussed

in Section 2. Computed responses may be fed back to the analyzer to rogene-

rate nonlinear terms or to compute derived quantities such as stresses.

Upon analysis completion, the computed responses are sent to a display post-

p rocessor (D). This is usually a separate module, although portior', of D

may be actually duplicated in the integrator to produce "display snapshots"

during the analysis process.

The process just described is schematized in Figure A-i. This software

organization may be regarded as an instance of modularization by program

function [41].

A.3 Transient Linear Analysis

A large percentage of dynamic analysis concern linear problems. Moreover,
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an important class of nonlinear problems can be processed in "piecewise

linear" mode, in which the response is linear except at isolated "busy"

periods. Consequently, the development of a modular, general-purpose

integrator would be perhaps economically unjustifiable if a capability for

efficiently functioning in linear or piecewise-linear mode is not provided.

This capability is activated by suppressing nonlinear feedback.

Figure A-2 schematizes the operational flow for transient linear analysis.

In this case, a high degree of modularity is possible. The structural

analyzer functions primarily as an array generator. These arrays typically

include the matrices C, D, and M and the "base load vectors" L. discussed
-3.

below. These arrays are placed on a global data base (GDB), which resides

on permanent storage devices. If the formatting requirements imposed by the

support processing utilities (F) conflict with those of the analyzer, the

arrays must be passed through a data format converter (CI) before they are

ready to be submitted to the integrator.

The temporal variation of the applied force vector can be often expressed

in the separable form

nA

f(t) = L. (t) = L X (A.1)

isl

where A. are user supplied load factors and L is the base load matrix whose

columns are the base load vectors L". Frequently, nX << nf, the number of

freedoms; if n. = 1, the loading is called proportional. Usually, the base

load vectors result from discretization of forcing fields such as surface

tractions, temperature variations or body forces, and must be therefore

generated by the structural analyzer (this is the cause of the path accessing

the applied force segment in Figure A-2). The decomposition (A.1) entails

considerable computational advantages if L is constant over a set of problems

and che user wishes to investigate the response to a ensemble of load

histories.

computed responses are placed on the global data base and can be later

accessed by the display postprocessor module (D). If the history of derived
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quantities such as strains and stresses is required, the simplest procedure

is to send the computed responses back to the analyzer; derived responses

can be then accessed by D. Two format converters, identified as C2 and C3

in Figure A-2, are generally required for this operation. Displayed results

may take the form of time histories, envelope (peak response) plots, and

response spectra.

An implementation of the operational flowchart in the form of data base-linked

program network [40] is illustrated in Figure A-3. A key ingredient is a

common data base manager (M) through which the global data base is accessed.

In addition, computational modules such as the analyzer and the supporting

matrix processors normally have their own local data bases (LDB), which con-

tain intermediate result and auxiliary data structures. These local data

bases are efficiently maintained in a "virtual memory" storage pool adminis-

tered through local data base managers. These may be developer-supplied or

part of the operating system library.

It is imporuant to realize that the degree of modularity of this implementa-

tion is very high. For example, replacing an analyzer by another entails

changing the converters (CI, C,, C3), with no side effects propagating to

the integrator. Conversely, incorporation of technical improvements in

the integrator does not imply that the analyzers must be modified.

Th ability to "plug in" different linear analyzers is particularly advanta-

geous if segments of the structure are modeled by different programs. This

is a common occurrence in large-scale engineering projects involving many

subcontractors. The converter C1 is then complemented by a "substructure-

linking" module that ties the various models together.

Another advantage of the data base-linked organization Is potentially smooth

adaptability to distributed processing (segments of the problem may be

assigned to different computers). For example, the display postprocessing

stage can be most economically carried out on a minicomputer.

A.4 Transient Nonlinear Analysis

Figure A-5 depicts the operational flow for transient nonlinear analysis
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carried out through a pseudo-force based integrator. The key difference

from the linear case is the occurrence of response feedback at each time

step. This has a detrimental effect on the degree of modularity attainable

as regards integrator-analyzer interaction.

Computed response information is used by the analyzer for evaluating stresses,

nonlinear force terms and applied forces (if the latter are configuration-

dependent). In problems involving material nonlinearities, the stress cal-

culations also impacts the generation of stiffness matrices and of certain

nonlinear force terms.

One of the constraints imposed by the lessened functional modularity is

the elimination of the array format converter C 1 The array conversion

would have to be exercised many times during the run, which can be expensive.

The elimination of C1 can be effected in several ways:

1. Embed C in A so that arrays are directly produced in P-acceptablen1

format.

2. Configure P so that various self-labeled array structures are

accepted [42].

3. Do matrix processing in A so that most of the required array trans-

mission is in the form of one-dimensional arrays.

In connection with the third approach, it is noteworthy to mention that

explicit nonlinear integrators are inherently more modular than implicit

integrators, inasmuch as all analyzer-to-integrator data can be transported

in vector form, including the diagonal mass matrix M (cf. Section 2.7).

How can the functional flowchart of Figure A-4 be implemented to maximize

modularity? One possible solution is shown in Figure A-5. Here the analyzer

and integrator operate as "coroutines" linked by an executive control

component E.

Some operating systems require that E be a developer-supplied program, a

restriction that forces A and I-P to be organized as parallel overlays.
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This is unfortunate, for ever.? zcdifl.:atizsn 0f e:er c r-c n -

:omclete recnnscruc:;:n of the overliv iaCe. :-:r-- a-o e

st-s-ens alow E Zo be Lazemen~ea as a cata.:gue. control procezure tmat

•slmov executes A or - aCc=rdiJng to run cc.:icr state ".arzakes.

th.is case, the two sides of Figure A-E can be kezt as ;hvs-icaly independent

programs served by a common version of the data base manager 2.

iA.5 The STINT Code

A stand-alone integrator called STINT has been develoced foilowing the loosely-

icoucled =rocessor acproach. •niýia. verslons w..ere zrzmar:l-' used as teszhed

cf new :e.nnaiues and reference source f:c subsec'en- ev pe cf rrcduc-

! zlon-level versions. STZ::T can sperate as an ,Z;L r expli-i= in-e-rt cr.

IThe lnplicit Integration branch uses inne trapezoidaa rule and the Park

3-step method [13] as basic formulas for treating linear and nonlinear

oroblems, respectively. Processina of the latter relies upon a -eneral

zseudo-force apcroach used in conjunction with z he matrix scaling technique

described in Section 3. The (Cl) computatzonal secuence is presencI17 used,

"althougn mpolementation of (JO) is anticipated. Furtuer mnpiementa:ion dzetails

are given in Underwood and Park [J5.

The explicit integration branch is based upon the variable-step central dif-

ference scheme [271. impiemencamion derails are goven in Under-ood and

A long-term effort in "tuning up" probler-adaprive fa-nures of STINT,

notably the automatic stepsize selection, has resulted in impressive but

"staggered" performance gains in either the implicit or ex.liciz branch. As

a consequence, efficienvy crossover points on the same test problem set have

varied as new verions are orenared. Presently, the explicit integration branch

is considered to be in superior shape.

Al.though STINT can switch from explicit to implicit mode, or vice-versa,

during an analysis run, the switch points must be presently specified by

t.e user. our ultim~ace goal is to have STINT select the integration mode

automatically according to a cost (merit, function minimizaclon criterion;
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i - ii
this feature would greatly enhance the problem adaptivicy of The integrator.

The realization of this goal will have to wait, however, until steosize

control techniques in the implicit branch demonstrate the same degree of

reliability currently achieved in the explicit branch.
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